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Introduction
One of the largest areas of research in applied algebra is the field of error-correcting

codes, which started in the late 1940s [5, 16]. Coding theory focuses on storing information
so that it gains resilience to the loss or corruption, and has found applications in many areas
of information storage or transmission.

This widespread application is especially true of Reed-Solomon codes, which use poly-
nomials over finite fields to encode information [15]. More specifically, Reed-Solomon codes
form the basis for CD and DVD technology, enable communications with the Voyager probes,
and more [21]. A modern application of error-correcting codes is within the field of dis-
tributed storage, inspired by the server storage systems of large tech companies such as
Google, Amazon, and Microsoft. This has been an active area of research for the past
decade [2, 3, 19].

Figure 1: Information distributed over a set of servers, sending information along red con-
nections to repair the information corrupted in Server 4. Graphic from [20].

The success of Reed-Solomon codes has inspired much work in the theory of error cor-
rection. An important instance of this is the class of algebraic geometry (AG) codes, which
are formed by considering more general algebraic curves over finite fields [4]. Comparing to
Reed-Solomon codes, classical AG codes use the rational points on algebraic curves instead
of points on an affine line, and use the Riemann-Roch spaces of certain divisors as evaluation
functions instead of just univariate polynomials. The study of these and similar codes forms
a rich combination of algebraic geometry and classical coding theory.
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Past Work
Locally recoverable codes (LRCs) are designed for applications involving distributed stor-

age of information, and perform error correction by accessing less information than previous
decoding methods. This can conserve the bandwidth on the communication between servers
where partial information is stored, leading to faster information recovery times. Another
measure of LRCs is their availability, which is the number of unique ways that the same
piece of information can be recovered. These unique sets are called repair groups. Algebraic
curves over finite fields can lend themselves naturally to forming LRCs. This is done by con-
sidering the intersections of lines with the curve, and using the points from each intersection
to perform local error correction; these codes are called Hermitian-lifted codes [6].

The Hermitian-lifted code construction is of special interest because of the number of
repair groups formed, and is a place where other LRCs struggle. Hermitian-lifted codes also
offer a vastly improved asymptotic storage than classical Hermitian codes. My dissertation
work extends this to other algebraic curves beyond the Hermitian curve, yielding codes with
much higher relative availability [10]. This natural availability offered could be beneficial for
implementation on servers, because the availability scales well with size when other LRCs
do not. Moreover, in my dissertation I form criterion to classify the behavior which governs
whether or not a code will yield interesting results in the same way as the Hermitian-lifted
codes [14]. With some specific facts about a given algebraic curve, one can determine whether
or not the asymptotic storage gain could match that of Hermitian-lifted codes. This work on
curve-lifted codes continues to be of research interest to myself and to others [7, 8]. Finding
appropriate curves will offer developers of distributed storage systems better options for
large-scale systems, which could drastically improve maintenance of the data centers we rely
on.

In addition to LRCs, I also have work in alternative decoding techniques that use less
information than prior decoding methods. Fractional decoding utilizes less information in
a different way than LRCs. Where LRCs access less information symbols, fractional de-
coding compacts information by utilizing properties of the field trace. In collaboration with
Gretchen Matthews and Welington Santos, I look at fractional decoding applied to AG codes,
which opens exploration of other benefits offered by AG codes [11, 12]. This is done by par-
titioning the points on the Hermitian code using a set of parallel lines which all intersect the
Hermitian curve in the same number of affine points, as can be seen in Figure 2.

Additionally, in my dissertation I construct algorithms for the fractional decoding of
Hermitian-lifted codes and norm-trace-lifted codes [14]. Observing that intersections of lines
and curves is core to both the curve-lifted code construction and to fractional decoding, I
compound the ways in which these codes may be recovered with less information, further
building the case for their use in applications.

Future Directions
The first research direction is extending my past research. My general results on curve-

lifted codes described in my dissertation is dependent on specific knowledge of intersections
between lines and algebraic curves, which is not in general known. Finding sufficiently tight
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Figure 2: Partition of affine Hermitian points over F16 with vertical lines.

bounds on these intersection numbers will give an idea of what algebraic curves fit within this
code construction. As another project, the performance improvements of fractional decoding
applied more generally to LRCs has yet to be studied in general. I propose looking further
into fractional decoding applied to Hermitian-lifted codes and norm-trace-lifted codes, to
begin understanding the benefits of fractional decoding of LRCs. Even more project direc-
tions involve altering the geometry of the code construction, either by considering AG codes
constructed from higher-dimensional varieties, or by considering repair groups formed by
low-degree polynomials other than lines.

Another related area of research is quantum error-correcting codes [17]. Good quantum
codes are necessary for scaling physical implementations of quantum computers, due to the
instability of quantum information. Connections made in the mid-1990s between classical
codes and quantum codes remain a viable option for generating better quantum codes from
classical codes [1, 18]. Since norm-trace-lifted codes might have good dual codes as a result
of the predictability of their monomial bases, they are a prime candidate for considering
with quantum code constructions. This work will benefit from the time I have spent at the
Johns Hopkins Applied Physics Laboratory learning about quantum error correction.

Also inspired by the rise of quantum computing is the need for post-quantum cryptog-
raphy. Current classical cryptosystems are susceptible to Shor’s factoring algorithm, which
factors integers in polynomial time, and so for the past couple years NIST has orchestrated
the search for a new post-quantum standard. By far the oldest of these candidates is the
McEliece cryptosystem, which is based on error-correcting codes [13]. This work will be a
natural extension of experiences I had during my graduate studies, since I spent much of
that time studying the literature on code-based cryptography, and have co-written a chapter
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of an undergraduate textbook on these cryptosystems [9]. Specifically, the work of continu-
ing the search for classes of codes that offer security in current cryptosystem candidates is
important to continue offering options for NIST standardization.

Many of my research directions involve exploring new fields of study, partially in order
to see what other unknown connections exist between algebraic geometry and information
storage. The connections that AG codes share to all these important applications places
their properties in a unique position. Because the goals of coding theory are so broad,
the problem of storing information has many distinct approaches, including via algebraic
geometry. Through this, the richness of algebraic geometry has unexpected impact on the
way that information may be stored on the technologies of the future, and I appreciate
my place in the research community as being able to bridge the gap between what might
otherwise appear to be very disconnected fields of study.
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