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1 Preliminaries

For ease of reference, we list the results we demonstrate in the paper at the beginning of the
document. The main result we show here is the following.

Theorem. If three distinct x1, x2, x3 ∈ Fn
2 have equal Hamming weight, then there exists

a Chebyshev center y ∈ Fn
2 that is the same Hamming distance from each xi.

The writing of a solution to this problem is in response to a question posed by Yihan
Zhang five years ago [2, 3]. This question has relevance to Zhang’s research on list decoding
[4, 5]. We reproduce necessary definitions to understand the problem statement in this
section. Here, F2 is the finite field with two elements, and the Hamming distance d between
two vectors x and y is the number of coordinates i where xi ̸= yi.

Definition 1.1. Given three distinct points x1, x2, x3 ∈ Fn
2 , with Hamming distance d, the

Chebyshev radius of them is
min
y∈Fn

2

max
i∈{1,2,3}

d(xi, y).

Definition 1.2. The Chebyshev centers of x1, x2, x3 is the set of y which achieve the optimal
value of the above radius.

In a continuous setting, the Chebyshev center is the center of the largest ball inscribed by
the set of points given. Note also that the Chebyshev radius and Chebyshev center may be
defined for n points, instead of only three [1, Section 4.3.1]. However, we restrict Definition
1.2 to three points in order to stay consistent with the question as written.

∗These results were produced not in affiliation with, and without any resources of, the current place of
work of the author.
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2 Results

The approach for proving the main theorem uses strong induction. The idea behind our proof
is to show that there is always a way to guarantee the existence of coordinates {j}j∈{1,...,n}
which do not affect the equal Hamming weight of x1, x2, x3 when disregarded. We then
consider a new triple, formed by restricting to every other coordinate outside of this set.
Then, this new triple of shortened vectors will have an equidistant Chebyshev center. From
this equidistant Chebyshev center, we may then construct a Chebyshev center which has the
length of the original vectors {xi}, and is equidistant to them.

This argument is supplemented by Lemma 1. The purpose of Lemma 1 is to show that
at least one of the following five configurations must exist within sufficiently long vector
triples {xi}. Notice that each of these coordinate configurations has equal Hamming weight
among {xi}. So, informally, the following lemma shows that these are the “atomic” ways to
maintain equal weight among three vectors over F2.

Lemma 1. The jth coordinate of xi is written xj
i . Suppose that three distinct x1, x2, x3 ∈ Fn

2

have equal Hamming weight and that n > 6. If no component is common among them (i.e.,
for no j are all xj

i either 1 or 0), then there must exist either a pair j1, j2 or triple j1, j2, j3
of coordinates which have one of the following 5 sorts of entries for x1, x2, x3 respectively.

x1

x2

x3


1 0 0 1 0 1 0 0 1 1 1 0
0 1 0 1 0 0 1 1 0 1 0 1
0 0 1 0 1 1 0 1 0 0 1 1

Proof. We wish to show that at least one of the five above configurations must exist; to do
this, assume that none of the last four hold, and will show the first configuration must exist.

Assume for the sake of contradiction that exactly two of the xi have entries of 1 in some
coordinate j. Then, there is no column with a 1 in any other coordinates of the third xi.
We rephrase this in an example, without loss of generality:

If the xi entries of index j appear as
1
1
0
, then there are no indices of the following:

•
x1 = (. . . 0 . . . )
x2 = (. . . 0 . . . )
x3 = (. . . 1 . . . )

, since the second configuration does not occur,

•
x1 = (. . . 1 . . . )
x2 = (. . . 0 . . . )
x3 = (. . . 1 . . . )

or
x1 = (. . . 0 . . . )
x2 = (. . . 1 . . . )
x3 = (. . . 1 . . . )

, since the fifth does not occur, and

•
x1 = (. . . 1 . . . )
x2 = (. . . 1 . . . )
x3 = (. . . 1 . . . )

, since we assumed no common entry in any coordinate.
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However, this would mean that the third xi can never have an entry of 1, a contradiction
with the assumption of equal Hamming weight among x1, x2, x3.

Since no index j can have two of xj
1, x

j
2, x

j
3 equal 1, and since by assumption there is no

coordinate where all three vectors are 0 or 1, we then know that for each coordinate j there is
exactly one xi with entry 1. We now must guarantee that at some coordinate in each xi there
is a 1; since there is only one vector with all zero coordinates, for each xi to have the same
weight and still be distinct from each other, there must be at least one coordinate ji where
xji
i = 1, and gathering one such coordinate for each i gives us our first configuration. ■

With this, we proceed with the strong induction argument to prove the main result.
Note that since the configurations in Lemma 1 utilize two or three columns, that there are
multiple base cases to include in order to fully use the lemma.

Theorem 1. If three distinct x1, x2, x3 ∈ Fn
2 have equal Hamming weight, then there exists

a Chebyshev center y ∈ Fn
2 that is equidistant from them; that is,

d(x1, y) = d(x2, y) = d(x3, y).

Proof. We proceed by using strong induction, and include multiple base cases.

Base case n = 3: The only triples in F3
2 that have equal weight are the following.

x1 = (1, 0, 0) x1 = (1, 1, 0)
x2 = (0, 1, 0) x2 = (1, 0, 1)
x3 = (0, 0, 1) x3 = (0, 1, 1)

Each of these triples have Chebyshev centers y = (0, 0, 0) and y = (1, 1, 1) respectively.
Each of these two Chebyshev centers are of Hamming distance 1 from each member of their
respective triples.

Base cases n = 4, 5, 6: Proceed similarly with computation. A Python script to test reason-
ably small cases is included in Appendix A.

Inductive step: Assume that n > 6. Assume that for all k < n that for any triple

x1, x2, x3 ∈ Fk
2 of equal Hamming weight that there exists a Chebyshev center y ∈ Fk

2

equidistant to the three of them. We will show that for any triple x1, x2, x3 ∈ Fn
2 that there

exists an equidistant Chebyshev center y ∈ Fn
2 .

Case 1: Assume that there exists some index with an entry common to all x1, x2, x3.
That is, if we label the jth component of xi as xj

i , then for some 1 ≤ j ≤ n we have that
either xj

i = 1 for all i, or then xj
i = 0 for all i. As a visual example, this appears as the

following when the common entry is a 0.

x1 = (x1
1, x

2
1, . . . , x

j−1
1 , 0, xj+1

1 , . . . , xn
1 )

x2 = (x1
2, x

2
2, . . . , x

j−1
2 , 0, xj+1

2 , . . . , xn
2 )

x3 = (x1
3, x

2
3, . . . , x

j−1
3 , 0, xj+1

3 , . . . , xn
3 )
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Consider then the triple constructed by restricting to all coordinates except j, forming
the triple

x′
1 = (x1

1, x
2
1, . . . , x

j−1
1 , xj+1

1 , . . . , xn
1 )

x′
2 = (x1

2, x
2
2, . . . , x

j−1
2 , xj+1

2 , . . . , xn
2 )

x′
3 = (x1

3, x
2
3, . . . , x

j−1
3 , xj+1

3 , . . . , xn
3 )

Since this new triple has members of length n − 1 < n, we know by the inductive hy-
pothesis that there exists a Chebyshev center y′ ∈ Fn−1

2 equidistant to x′
1, x

′
2, x

′
3. We can

then construct a Chebyshev center from this y, by inserting an appropriate coordinate; if
the common component was 0 (resp. 1), insert a 0 (resp. 1) in y′ to make y ∈ Fn

2 , which is
then an equidistant Chebyshev center of x1, x2, x3.

Case 2: Assume there exists no index with common entry among x1, x2, x3. Then, for
each index j, exactly one or two of xj

1, x
j
2, x

j
3 are 1. Just as in the previous case, we will

consider methods of restricting the triple {xi} to an equidistant triple {x′
i} of size k < n. In

order to do this, we again consider ways of removing sets of indices.
We showed in Lemma 1 that there must occur a pair or triple of coordinates that exhibit

one of five configurations. Restricting to coordinates other than that pair (or triple), we
have vectors x′

1, x
′
2, x

′
3 ∈ Fn−2

2 (or Fn−3
2 ) which are equal Hamming weight, and so have an

equidistant Chebyshev center y′ ∈ Fn−2
2 (or Fn−3

2 ) by the inductive hypothesis. This is true
even though we are cutting out two or three columns, given base cases through n = 6.

Then returning to x1, x2, x3, construct y with the entries of y′ in the coordinates we
previously restricted to, and a 1 in the coordinates which were removed in the restriction.
Then, y is an equidistant Chebyshev center for the triple x1, x2, x3, concluding the second of
our two cases. ■
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A Base cases in Python

# Equidistant Chebyshev center

# Author: Aidan W. Murphy

# Purpose: Determine if all triples of equal -Hamming -weight vectors in

# (F_2)^n have a Chebyshev center which is equidistant from them.

# Inputs: n - length of vectors

# Outputs: True/False - truth of all vector triples in (F_2)^n having such

# a Chebyshev center

# Importing packages and functions

import numpy as np;

from itertools import combinations;

# Defining functions

def binaryHammingDistance(x,y):

# Inputs:

# x,y - binary lists of the same length

# Output:

# S - the number of differing coordinate entries

S = [];

for i in range(len(x)):

S.append ((x[i] + y[i]) % 2);

return(sum(S));

def allBinaryStrings(n,arr ,i,blankList):

# Inputs:

# n - length of strings to generate

# i - iterate , for recursion

# Output:

# blankList - list of all strings

s = [];

if i == n:

for i in range(0,n):

s.append(arr[i]);

blankList.append(s);

s = [];

return

arr[i] = 0;

allBinaryStrings(n,arr ,i+1,blankList);

arr[i] = 1;

allBinaryStrings(n,arr ,i+1,blankList);

return(blankList);

def equalWeightTriples(stringList):

# Inputs:

# stringList - a list of binary lists of equal length

# Output:

# tripleList - all possible equal weight triples of the original
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# list

tripleList = [];

combos = combinations(stringList ,3);

combos = list(combos);

for i in range(len(combos)):

x1 = combos[i][0];

x2 = combos[i][1];

x3 = combos[i][2];

if (sum(x1) == sum(x2) and sum(x2) == sum(x3)):

tripleList.append([x1,x2,x3]);

return(tripleList);

def chebyshevCenters(stringList):

# Inputs:

# stringList - a list of binary lists of equal length

# Output:

# centers - list of all Chebyshev centers of the input collection

distanceList = [];

for i in range(2** n):

tempList = [];

for j in range(len(stringList)):

d = binaryHammingDistance(S[i],stringList[j]);

tempList.append(d);

distanceList.append(tempList);

for i in range(len(distanceList)):

distanceList[i] = max(distanceList[i]);

m = min(distanceList);

centers = [];

for i in range(len(distanceList)):

if distanceList[i] == m:

centers.append(S[i]);

return(centers);

# Main program

n = 4; # set the length of vectors to search over

S = allBinaryStrings(n,[None] * n,0,[]); # generate all binary strings

E = equalWeightTriples(S); # identify all equal weight triples

TFList = []; # list to hold results of search

for trip in E: # for all equal weight triples ...

CC = chebyshevCenters(trip); # find Chebyshev centers

equidistantCenters = [];

for cent in CC: # and for those Chebyshev centers ...

if (( binaryHammingDistance(cent ,trip[0]) == \

binaryHammingDistance(cent ,trip[1])) and \

(binaryHammingDistance(cent ,trip[1]) == \

binaryHammingDistance(cent ,trip[2]))): # determine which are
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# equidistant ,

equidistantCenters.append(cent); # and record it, if the

# center is equidistant.

# uncomment to see triples and their equidistant centers

# print (" Triple: ",trip ," | Equidistant Centers: ",

equidistantCenters)

if equidistantCenters == []: # If there are no equidistant centers ...

TFList.append(False); # "there are equidistant centers" is False.

else: # Otherwise ...

TFList.append(True); # "there are equidistant centers" is True.

# return False if any of the above are False , and True otherwise.

isThereACenterforallTriples = bool(np.prod(TFList));

print(isThereACenterforallTriples)
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